If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-20y+90=0
a = 1; b = -20; c = +90;
Δ = b2-4ac
Δ = -202-4·1·90
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{10}}{2*1}=\frac{20-2\sqrt{10}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{10}}{2*1}=\frac{20+2\sqrt{10}}{2} $
| 2(4=3x)=-5x-8(-1+8x) | | 7(2y-10)=7 | | -38=6(v-5)-8v | | 10z-16-100-3z=24 | | 2z+23=1/2 | | -1/6t=-15 | | 2z+23=1÷2 | | 3x^2+15x-85=0 | | 2x+1x+1=7/4 | | 12y+42=10y+7 | | 7a+25=15+9a | | 5(3x+1)-10=25 | | 10x-3=11x-4 | | 5+16w=6w=45 | | Z^2+2x=3 | | y=2(-3) | | 4/35=x/100 | | 27y=-9 | | 6+3y=-y | | 12x-198=4x-6 | | 1.49=5/x | | 2x+-6=8x+4 | | 8x^2-19x+32=0 | | 6x-13=9x+6 | | 2^x+32x=0 | | x3+x2+14=0 | | (3x)7=40 | | 3x-5–5x=3 | | 4x^2-32=2x^2 | | 8g²-6g-5=0 | | (9)2x=729 | | 9^2x=729 |